A new note on factored infinite series and trigonometric Fourier series

نویسندگان

چکیده

In this paper, we have proved two main theorems under more weaker conditions dealing with absolute weighted arithmetic mean summability factors of infinite series and trigonometric Fourier series. We also obtained certain new results on the different methods.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Localization of Factored Fourier Series

HÜSEYİN BOR Abstract. In this paper, a general theorem dealing with the local property of | N̄ , pn, θn |k summability of factored Fourier series has been proved , which generalizes some known results. 2010 AMS Subject Classification: 40G99, 42A24, 42B08.

متن کامل

A New Summability Factor Theorem for Trigonometric Fourier Series

In this paper, a known theorem dealing with | N̄, pn |k summability factors of trigonometric Fourier series has been generalized to | N̄, pn, θn |k summability. Some new results have also been obtained.

متن کامل

Convergence of Trigonometric and Walsh - Fourier Series

In this paper we present some results on convergence and summability of oneand multi-dimensional trigonometric andWalsh-Fourier series. The Fejér and Cesàro summability methods are investigated. We will prove that the maximal operator of the summability means is bounded from the corresponding classical or martingale Hardy space Hp to Lp for some p > p0. For p = 1 we obtain a weak type inequalit...

متن کامل

Summability of Multi-Dimensional Trigonometric Fourier Series

We consider the summability of oneand multi-dimensional trigonometric Fourier series. The Fejér and Riesz summability methods are investigated in detail. Different types of summation and convergence are considered. We will prove that the maximal operator of the summability means is bounded from the Hardy space Hp to Lp, for all p > p0, where p0 depends on the summability method and the dimensio...

متن کامل

Determination of a jump by Fourier and Fourier-Chebyshev series

‎By observing the equivalence of assertions on determining the jump of a‎ ‎function by its differentiated or integrated Fourier series‎, ‎we generalize a‎ ‎previous result of Kvernadze‎, ‎Hagstrom and Shapiro to the whole class of‎ ‎functions of harmonic bounded variation‎. ‎This is achieved without the finiteness assumption on‎ ‎the number of discontinuities‎. ‎Two results on determination of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Comptes Rendus Mathematique

سال: 2021

ISSN: ['1631-073X', '1778-3569']

DOI: https://doi.org/10.5802/crmath.179